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in time). Similar to the lattice Boltzmann method, the mesh spacing is linked to the Mach
number. An accuracy higher than that of the lattice Boltzmann method is achieved by
exploiting the asymptotic behavior of the solution of the artificial compressibility equa-
tions for small Mach numbers and the simple lattice structure. An easy method for accel-
erating the decay of acoustic waves, which deteriorate the quality of the numerical
Artificial compressibility method solution, and a simplg cure for the checkerboard instabiliFy are proposed. The. high perfor-
Asymptotic analysis mance of the scheme is demonstrated not only for the periodic boundary condition but also
Acoustic wave for the Dirichlet-type boundary condition.
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1. Introduction

Various numerical methods for the incompressible Navier-Stokes equations (INSE) employ Poisson (or Helmholtz) solv-
ers, which require additional computations at each time step. The adoption of an implicit time-marching is quite natural in
this intrinsically implicit approach and the inversion of a matrix occupies the major part of the computation. The artificial
compressibility method (ACM), which was proposed by Chorin [4] in the late 1960s, is alternative to the intrinsically implicit
approach. ACM solves the artificial compressibility equations (ACE), where the solenoidal (divergence-free) condition for the
flow velocity field is replaced by a continuity equation with the pressure time derivative, which enables us to compute the
pressure field evolutionally. Since ACE agree with INSE in the steady case, ACM is said to be principally intended for steady
flows and implicit time-marching methods are sometimes introduced. However, ACM is capable of yielding an accurate solu-
tion for the time-dependent INSE when the Mach number is small enough. In fact, Témam justified ACM mathematically by
proving the weak convergence of an ACE solution from an initial data compatible with INSE to the INSE solution for the same
initial data in the limit of vanishing Mach number [19]. ACE involve the acoustic (rapidly varying) mode besides the diffusive
(slowly varying) mode, the principal part of which is described by INSE. Moise and Ziane employed the renormalization
group method in the multi-scale analysis of ACE solution for small Mach numbers and derived the estimate that the error
of ACE solution (the deviation from INSE solution) for the flow velocity is bounded by a constant of the order of the Mach
number [14].

The lattice Boltzmann method (LBM) is another Poisson-free method for INSE and has been attracting a lot of attention
during the last two decades because of its simple numerical algorithm, which is also suitable for parallel computation,
and it is now widely employed in various simulations of unsteady complex fluid flows. It deals with the time evolution
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of the velocity distribution function of “artificial” gas molecules and yields an approximate solution for the time-depen-
dent INSE as the moments of the distribution function. The accuracy of LBM is said to be first order in time and second
order in space. For its theoretical justification, we refer the reader to e.g. Refs. [18,7,9,1], where the asymptotic analyses of
discrete kinetic equations (or their numerical schemes) for small Knudsen numbers [the Chapman-Enskog expansion and
the Hilbert expansion (diffusive scaling)] are carried out. These asymptotic analyses indirectly show the relation between
LBM and ACM. The Chapman-Enskog expansion derives INSE via ACE as the leading equation system in the Ma? expan-
sion for ACE (Ma is the Mach number) and ACE is also recovered by summing up the equation systems derived by the
Hilbert expansion. Since LBM computes the distribution function of gas molecules, it has been expected to have potential
abilities to deal with a rarefied regime beyond Navier-Stokes. In our previous paper [1], we examined this possibility and
arrived at the conclusion that the usual compact stencils, such as D2Q9 and D3Q15, are not sufficient for the realization
of physically correct high order stress. On the other hand, the kinetic formulation has a clear meaning in the compressible
case. The linearity of the convective term of kinetic equation drastically simplifies the theory of the approximate Riemann
solver, which is employed in most of shock-capturing schemes (see e.g. Ref. [15] and the references therein). This natu-
rally raises a question concerning the advantage of kinetic formulation in the incompressible case. Of course, one of its
advantages must be found in the performance at least. Although comparisons of ACM and LBM have been made in the
literature (e.g. Ref. [8]), however, it does not seem to be necessary to draw hasty conclusions at the present stage, since
LBM is still developing and it is not too much to say that the potential capabilities of ACM have not yet been explored
fully.

The present study concerns the exploration of the potential capabilities of ACM as a numerical tool for unsteady viscous
flows. Since LBM deals with the passage of Kn ~ Ma ~ € — 0, where Kn and € are the Knudsen number and the mesh spac-
ing, respectively, we regard ACM as an asymptotic numerical method dealing with the passage of Ma ~ € — 0 and inves-
tigate its properties in this direction. Since the simple lattice structure is considered to be one of the reasons for the success
of LBM, we will also make use of it. The remainder of the present paper is organized as follows. The asymptotic behavior of
ACE solutions for small Mach numbers will be studied in Section 2, where the construction of the diffusive mode, the exci-
tation of the acoustic mode due to incomplete initial data, a new dissipation mechanism to kill the acoustic mode quickly,
and a strategy of high order accurate computation for the time-dependent INSE will be explained. We aim to solve INSE
within the error of O(Ma*) by computing two ACE solutions for different Mach numbers under the same resolution, which
is different from the conventional Richardson extrapolation. The elimination of the acoustic mode will be one of the key
issues for the realization of high accuracy. In Section 3, the basic design of the numerical scheme will be prepared. A pro-
totype scheme for a linear 2D model PDE system will be studied and a simple cure for the checkerboard instability will be
proposed. The prototype scheme will be extended to the case of ACE in Section 4, where a high order accurate treatment of
the boundary condition will be explained in detail. The developed method will be tested in Section 5. Comparisons will also
be made with LBM there.

2. Theory
2.1. IBVP for INSE

INSE in the dimensionless form are expressed as

ou;

8—)4: ; (1)
ou; ou; oP  d*u;

W+u’6_xj+0_)q_v8_sz_ﬁ’ (2)

where x;, t, u;, P and f; are dimensionless variables and correspond to the space coordinates, time, the flow velocity, the (kine-
matic) pressure and the external force, respectively, and v is the dimensionless (kinematic) viscosity, which is equal to the
inverse Reynolds number, i.e. v = 1/Re (see e.g. Ref. [2]). We consider the problem in a bounded domain Q with the Dirichlet-
type boundary condition:

ui(t,x;) = g;(t,x;) X € 9Q. 3)

The vector g; must satisfy the compatibility condition
/ ginids =0, (@)
)

where n; is the unit vector normal to the boundary pointing in the outward direction. We consider the case where the initial
velocity field u;(t = 0,x;) = u;(x;) is compatible with the governing equation system and the boundary condition, i.e.

ou; _
O ®)

U (x) =gt =0,x) X €oQ. )
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The pressure field P(t, x;) is determined from the velocity field u;(t, x;) as a solution of the Neumann problem for the Poisson
equation derived from the momentum equation (2). The boundary condition for P is obtained by multiplying both hand sides
of Eq. (2) by n;. The initial pressure field P(t = 0,x;) = P*(x;) is generated from u; by the same recipe. We impose

P(t,x,)dV =0 (7)
Q
in order to make P unique.
2.2. ACE

The original ACM employs the following artificial continuity equation

oP  ou;

instead of the solenoidal condition, where k is a positive constant. In the present study, we consider the case of 0 < k < 1. As
will be seen later, this means small Mach number. Egs. (2) and (8) constitute ACE. We will consider the problem of ACE under
the boundary condition (3). By imposing

P(0,x)dV = 0 (3)

the condition (7) is always satisfied owing to the compatibility condition (4).
2.3. Diffusive mode and acoustic mode

As mentioned previously, ACE involve the diffusive mode and the acoustic mode. We will sketch these two modes as the
preparation for the later discussion.
We assume that both modes are slowly varying with respect to space:
oP ou;

P7

—_—~ — ~ Uj.
axj an

The diffusive mode is slowly varying with respect to time as well:

oP ou;
ot~ gt
Assuming P ~ 1 and u; ~ 1, i.e.
oP OP
~ o~ — ~ 1
ox; ot ’ 19
ou;  ou;
P A | 11
R T T (11)

and neglecting the pressure time derivative multiplied by the small parameter k, we have the solenoidal condition
from the artificial continuity equation (8). The momentum equation (2) remains as it is. The resulting equation system
is INSE.

The acoustic mode solution is rapidly varying with respect to time. Neglecting the nonlinear term, the force term, and the
viscous term in the momentum equation, we have the simplified ACE:

oP 61,[,'

Z %o,
<8t+8xi )
ou; oP
e B )
8t+8xi

The wave equation for P with the propagation speed k™'’ is derived from the above equations, which shows that the char-

acteristic time of the acoustic mode is O(k'/?). We introduce the new time variable 7 defined by
T=k "t (12)
and rewrite the above equation system using 7:

0P ou
k ot 6x,-_0’
e 0P

aT  0X; =0
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Since
oP ou;
AR T

1/2

u;, (13)

we notice P ~ k™ /“u; from the balance of terms in the above equations. The magnitude of the acoustic mode for the pressure
is much larger than that for the flow velocity.

2.4. Construction of diffusive mode
We will construct the slowly varying solution of ACE (2) and (8) satisfying the boundary condition (3) under the assump-
tions (10) and (11). We express the slowly varying solution as (u;s, Ps) and expand it into the power series of k:
Uis = Ujso + Ktis + kzuisz +eey (14)
Ps = Psy + kPg; +k2P52+"'. (15)

It should be noted that the above expansion is nothing more than the well-known Ma? expansion (the sound speed corre-
sponds to k~'/?). The condition (7) is expanded accordingly:

/QPSm(t,xk)dV:O (m=0,1,2,3,...). (16)
We assume

Uism ~ ag;fjm ~ ala"’j" ~0(1) (m=0,1,2,...), (17)

ag;:%agi’%om (m=0,1,2,...), (18)

which correspond to the assumptions (10) and (11). Substituting the above expansion into Egs. (2) and (8) and equating the
terms of the same order of power of k, we have the following equation systems:

6(;[—)20 . (19)
s 0ng0 1 021}50 = (20)
fRE °
% + ZLi[uks1, Ps1; Ukso] = 0, o
Tt o .
agifsz + ZLilths2, Pz tho] + st %j] =0, (24)

where

ou 9V, P
e, P Vi) = V= o :
Ziluk, P; Vi J X + 1 0X;j + O0X; v (9ij

(25)
The leading equation system is INSE and inhomogeneous Oseen-type equation systems follow. The boundary condition is
expanded accordingly:
uiSO(tv XJ) = gi(tvxj) Xj € aQ* (26)
Uism(t,X) =0 X;€0Q (m>=1). (27)

We can, in principle, construct the diffusive mode solution by solving the above equation systems from the lowest order with
appropriate initial data. Let (uj,,, Ps,) (m =0,1,2,3,...) be the initial data for (utism, Psm). As the initial data (uj,, Ps), we can

me?
choose the same one as that for INSE:
Ujgo = Uj, (28)
Py, =P (29)

Since the divergence of ujs, is determined by the time derivative of Ps; [Eq. (21)], we cannot give the initial data (uj,, P,)

arbitrarily. The recipe of construction of (uj,,Ps;) is as follows. We first construct uj; as the sum of an irrotational vector
field d; and a solenoidal vector field s;:
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u};l = di +S;. (30)
The vector field d; is defined by
_9¢
di= 5 (31)

where the potential ¢ is a solution of the Poisson equation

P¢o  IPs
Y __Z0 32
ox? ot |, (32)
under the Neumann-type boundary condition
29 _
nla—xi =0 Xx;€00. (33)

The solenoidal vector field s; must satisfy s; = —d; at the boundary 9Q. We refer the reader to e.g. Ref. [12] for the details of
the construction of s;;s; is not determined uniquely since there are infinite solenoidal vector fields satisfying the homoge-
neous boundary condition. Once uj; is determined, Pg, is computed in the following way. Taking the divergence of the
momentum equation (22), we have the Poisson equation for Pg;:

OZP;I _ @ aquSO 8ui*51 * @ 811}‘51 8”%0 + vazg (34)
((‘)Xi2 - ot (=0 OXi 8Xj 0 an =0 OX; E)Xj Oxﬁ [:07
where
0Py
The Neumann-type boundary condition for Eq. (34) is also supplied from the momentum equation (22):
OP; ou; . ou;
n; 0)(5,'] =n {v 8x12:] — Uiy 8}‘;]} X; € 0Q, (35)

where the boundary condition for u;s;, Eq. (27), is taken into account. Then, Pg, is determined as the solution of the above BVP
under the condition (16).

We notice that the construction of uj, and P; requires the information of the time derivatives d;Psy and 9,Pso at
t = 0. The construction of (uism,Psm) (M = 2,3,4,...) is similar and it requires higher order time derivatives for the INSE
solution.

2.5. Excitation of acoustic mode

In the case of complete initial data for the diffusive mode
Ujg = Ujgy + Kityy + KUy + -+, Py =Py +kPgy + kP + -+,

ACE yields only the diffusive mode in principle. In the case of truncated initial data, however, the solution of ACE is not re-
leased smoothly along the trajectory of diffusive mode and the gap excites the acoustic mode. We will estimate the magni-
tude of the excited acoustic mode in the simplest case where the initial data is the one for INSE:

ui(t = 0) = uj, = U, (36)
P(t=0) =Py, =P". (37)
Rewriting Eqs. (2) and (8) as those for the perturbation from the INSE solution, w; = u; — ;50 and q = P — Psg, we have
ow; ow;
Ttleff[Wk-,(E Ugso] +Wjaijl= 0, (38)
Bq ow; OPSO
| Tal R Pl L 39
at  ox, at (39)
The boundary condition and the initial condition for (w;,q) are
wi=0 xcd2 (w,q)=(0,0 (t=0). (40)
From Egs. (39) and (40), we have
W_ T (i=o),

ot~ ot
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which shows that 9,q is O(1) at t = 0. That is, the right hand side of Eq. (39) gives an initial impact on q and it excites the
acoustic mode. Let us estimate the magnitude of the acoustic mode. From the discussion in Section 2.3, the characteristic
time of acoustic mode is O(k'/?) under the assumption that the wave-length is O(1). We introduce the time variable 7, which
is defined by Eq. (12). From 9.q ~ q and 8,q ~ k™"/29.q ~ 1, we have q ~ O(k”z). If we require the balance of the term dw;/dx;
with the other terms in Eq. (39), we have w; ~ O(k). Incidentally, the estimate w; < O(k'/?) is obtained by the renormalization
group method in Ref. [14].

2.6. Suppression of acoustic mode

The acoustic mode excited by the initial impact deteriorates the quality of ACE solution as an approximate solution for the
time-dependent INSE especially for the pressure. The employment of high order initial data for the diffusive mode reduces
the initial impact and the magnitude of the acoustic wave decreases accordingly. A simple discussion similar to the previous
subsection leads to the conclusion that the magnitude of the acoustic mode is reduced from O(k) to O(k*) for the velocity and
from O(k"/?) to O(k*?) for the pressure by changing the initial data from (uj,, Pg) to (ujs, + Kujs;, Pso + kP5, ). We refer the
reader to Ref. [16] for the numerical example of the suppression of the acoustic mode by this approach. However, as seen
previously, this requires the information of 9;Ps, and 9,Pso at t =0 and even the construction of the initial data (uj,, Ps;)
is cumbersome generally. The second possibility is the introduction of a dissipation term into the continuity equation:

oP au,i
k<_ ,p) o, (41)

where y is a positive function of x; and t and is of the order of unity. In the following discussions, we will treat ) as a constant
for simplicity.
We rewrite Eqs. (2) and (41) using W; = (u; — uiso)k™" and Q = (P — Psp)k™"/%:

8W (9Q k]/z u BW 8Lli50 OW 11/2 8 W
ot o B0 o T o T 0x; oz
1o oW, oP
Q yk]/zQ-‘r ox + ( 50 VP50> =0.

i

In order to illustrate the role of the new dissipation term, we consider the simplest case of u;50 = 0 and neglect the nonlinear
term k*/ 2W}-8W,- /0x;. Then, the following dissipative wave equation for Q is derived from the above equation system:

2 3 2
%7( +7vk) Q+yk”26$—k”2v 0Q _ _jr (8 P5°+yaps°> k2 T (%WPSO). (42)

T ot ot Xz \ ot

The right hand side is a slowly varying external force term. The fourth term on the left hand side is the viscous damping term.
The third term on the same side, which is multiplied by 7y, acts like a dashpot in a simple mechanical oscillation system.
While the viscous damping term does not work well for small v (large Reynolds number), this newly introduced dissipation
term works irrespective of the magnitude of v. While the effect of viscous damping term increases as the wave number in-
creases, the new damping term works uniformly irrespective of the magnitude of the wave number. Incidentally, the bulk
viscosity is sometimes introduced in the momentum equation for the suppression of the acoustic mode (see e.g. Ref.
[17]) and this idea is also inherited in LBM [6,13]. Indeed, the introduction of the bulk viscosity increases the coefficient
of the viscous damping term in Eq. (42). In the present study, the damping for high wave numbers is treated in connection
with the suppression of the checkerboard instability (Section 3.2).

The introduction of the new damping term modifies the governing equation systems for the diffusive mode from the or-
der of k; Egs. (21) and (23) become

Ouis; | OPso _

o ot TP0=0 @)
ou; OP.

axslz + —5‘ +7Ps; =0, (44)

respectively. The initial data for (uism, Psm) can be constructed in the same way. Incidentally, the condition (7) still follows
from Eq. (9).

2.7. Main assumption and strategy

Let us consider the solution of IBVP for Egs. (2) and (41) with the initial data (36) and (37) and the boundary condition (3).
Because of the incomplete initial data, the acoustic mode is inevitably excited. The acoustic mode is weakened by the viscous
damping term as time advances and the decay is further accelerated by the newly implemented dashpot-type damping term.
After the extinction of the acoustic mode, the behavior of the solution is described by using the single time scale for the
slowly varying mode. We recall that there is only one parameter in this IBVP, i.e. k. We assume the form of Egs. (14) and
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(15) as the ansatz of the asymptotic solution for small k after the extinction of the acoustic mode. This is the key assumption
in the present study. The leading term (u;s, Pso) in the k expansion is the desired INSE solution for the initial data (36) and
(37), which follows from the convergence theorem for k — 0 [19]. The next order term (u;s;, Ps1) is governed by the inhomo-
geneous Oseen-type equation system, i.e. Eqs. (21) and (22). Then, we can excavate the desired INSE solution within the error
of O(kz) from two solutions of ACE for different values of k. That is, the leading error (ku;s;, kPs;) can be eliminated by com-
puting a suitable linear combination of these two solutions.

The above scenario is not clear from the dynamical point of view, however. Let us trace the diffusive mode solution back
to t = 0. We recall that there is a freedom in the choice of the solenoidal part of the initial velocity field uj, (Section 2.4).
While the ansatz implies that u;s; (and therefore uj,) is unique irrespective of the value of k, its theoretical assurance is
not presently available to the best of authors’ knowledge. The scenario would be supported numerically.

ACM is intrinsically explicit and the adoption of an explicit time-marching is quite natural. Then, the time step At will be
subject to the acoustic CFL condition At < k'/?¢, where € is the mesh spacing and k~/? is the sound speed of ACE. Another
time step restriction is the diffusive CFL condition At < €2/v. The former condition is related to the intrinsic error of ACE.
Small k is preferable for the accuracy and vice versa for the efficiency of numerical computation. The latter condition does
not become more serious than the former one while v is not large, i.e. v < 1. We link the mesh spacing € and the compress-
ibility parameter k by the relation

k = pe?, (45)

where f is a positive constant of the order of unity. Then, the acoustic CFL condition is rewritten as At < €2, which corre-
sponds to the diffusive CFL condition for v ~ 1.

The previous strategy is similar to that adopted by LBM and this makes a fair comparison between ACM and LBM possible.
Recall the fact that LBM also deals with the passage Ma ~ € — 0. Since the characteristic speed of flow is O(1) and the numer-
ical sound speed of LBM C;s is O(€/At), we have immediately C; ~ 1/€ and At ~ €2, which corresponds to the acoustic CFL
condition for ACM. In the actual updating rule of LBM, the time step and the mesh spacing are normalized and the numerical
sound speed and the flow velocity become O(1) and O(e), respectively. Let us consider for simplicity the classical LBM, i.e.
BGK with the forward Euler time-marching. There are three parameters in its updating rule, i.e. the mesh spacing €, the mod-
ified numerical sound speed c¢; = Cs€ (At = €2/c;), and the dimensionless relaxation time 7. The well known necessary sta-
bility condition for the classical LBM is 0 < s(=7"') <2 and € should be very small when the value of s lies in the
neighborhood of the supremum. We refer the reader to e.g. Ref. [11] and the references therein for the recent theoretical
results on the stability and the convergence of LBM. Incidentally, s = 0 corresponds to the computation of free flow without
collision and the updating rule of LBM is reduced to the shift operation, the stability of which is obvious. On the other hand,
when the results of LBM are interpreted as those of INSE, the relation between t and the dimensionless kinematic viscosity v
is required. The formula [18] is

-1
st = (3477 (46)

from which we immediately notices — 2 as v — 0and s — 0 as v — oo, i.e. the necessary stability condition is satisfied irre-
spective of v. The error of LBM, however, strongly depends on s, as shown (among others) in Fig. 5 of Ref. [1], where the nor-
malized numerical error is reported as a convex function of s. While the error slightly changes as s increases in the range
1 <'s < 2, it dramatically increases as s decreases in the range 0 < s < 1. Therefore the value of At (or ¢;) should be chosen
in such a way that the value of s lies in the range 1 <'s < 2, i.e. s ~ O(1) or equivalently At < €?/v, which corresponds to the
diffusive CFL condition for ACM. This condition is not for the stability but for the accuracy of the numerical result and it
should be satisfied in practice. Otherwise very fine resolution is necessary for satisfactory results even in the case of the sec-
ond order convergence rate.

Our strategy is rephrased as follows: We will obtain the solution of INSE within the error of O(e*) from two numerical
solutions of ACE for different values of g under the same resolution € by making use of the linearity of the leading error
in B. The behavior of the numerical solution depends not only on the parameter of the equation system but also on the dis-
cretization error. For the realization of the above scenario, the discretization error must not alter the form of the first two
equation systems of the diffusive mode. In the next subsection, we will study the influence of the discretization error on
the diffusive mode solution.

2.8. Formal asymptotic analysis of numerical scheme for small €

In the error analysis of a finite difference scheme, we tacitly assume that the discrete numerical data [u; and P at
(t,x1,X2,X3) = (NAt,11€,12€,13€) (n=0,1,2,3,...,1:=0,1,2,3,...) in our problem] behave like the samples taken from a
smooth mother function (functions), which depends on the discretization parameter, such as the mesh spacing €. The asymp-
totic behavior of the mother function for small € provides the information of the consistency and the accuracy for the numer-
ical method. Suppose that the mother functions are expanded into the power series of €. The coefficient functions at the
leading order must satisfy the target equation system. If the coefficient functions at the next order are governed by an equa-
tion system which does not allow the null solution, the numerical method is judged to be at most first order accurate in €. If it
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does, the numerical method has the possibility to yield a second order accurate solution. In other words, the asymptotic anal-
ysis of numerical scheme provides the governing equation system for the discretization error. Let us go back to our problem.
The error of ACM consists of the discretization error and the intrinsic error of ACE, i.e. the error due to the compressibility, as
in the case of LBM. We refer the reader to Ref. [10] for the details of the asymptotic theory for finite difference methods and
Ref. [9] for its application to LBM.

We investigate the asymptotic behavior of the numerical solution for ACE (2) and (41) with k = pe? for small mesh spac-
ing € under the assumption that the numerical solution is slowly varying. We will employ only the formal accuracy of the
scheme in the following analysis; the explicit form of the scheme is not necessary. We first deal with the space variables
continuously and investigate the truncation error with respect to time. We consider the case where the formal accuracy
of the time-marching method is second order. We express the time step At as be2, where b is a positive constant of O(1),
and write the mother functions for the fixed values of g and b as i(t,x;; €2) and ﬁ(t, X;; €2). The numerical solution at
t =nbe? (n=0,1,2,3,...) is expressed as i;(nbe?, x;; €2) and ﬁ(nbez,xi; €2). Since the time-marching is second order accurate,
the mother functions for the finite difference scheme satisfy

oP be? 9*P ~ 10 bE[,5 10, . .

EJFTWﬂL‘“*—[/PJFEaT{J T {/ PJFEaT(j(Vuj*mj—ﬁ) +0(e"), (47)

ol be? Py 3 be? o . 0 oP 1 &y P of; .

E+TW+...7_ml+ﬁ+7 (m’_ﬁ)a_)cj+u]8_>cj(ml_ﬁ)+/axi+ﬁm_v8_x]?(m'_ﬁ)+a -‘rO(E )7

(48)
at each discrete point t = nbe? (n=0,1,2,3,...), where
o, OP &y

m,‘—u_jaij-‘rafxi— TXJZ (49)
We expand P and i; into the power series of €2:

P=PO PO L POt 4 ... (50)

ﬂi:UEO)+ﬂ;1)62+ﬂ§2)E4+"'7 (51)

where P™ and it,('") (m=0,1,2,3,...) are functions of t and x;. Substituting the expansion (50) and (51) into Egs. (47) and

(48), noting k = pe?, and assuming the slowly varying mode, i.e. 3,P™ ~ 9,0™ ~ 0(1) (o = t,x;), we have the equation sys-
tems for (™, P™) (m =0,1,2,...). The leading equation system is, of course, INSE:

i;(0)
ag;i =0, (52)
o 40 ou” aﬁ<0>_v82a}°>
ot i o) o x?

-fi=0, (53)

and the inhomogeneous Oseen-type equation systems follow:

oulV PO

P9 ) =0 54
o S e ; (54)
o ~(1) B, 5(0)
or T LiE PO <o, (55)
ou?  (oP" o

vPO ) =0 56

o TP\ T : (56)
ou? ) B.a0] oo
S+ [0 P2 + 4 o th=0. (57)

where the discretization error appears as the term Iy, the explicit form of which depends on the method of the time-march-
ing. In the case of first order accurate time-marching, the discretization errors appear from the equation system for

(ﬂf.]% I3<1)) as the source terms, which are not proportional to . Therefore, the time-marching must be at least second order

accurate.
Up to now, we have not yet taken into account of the spatial discretization error. It can be treated in the above analysis as
the additional source term. If the discretization error of divu is O(€?), it appears in Eq. (54). If the error of m; is O(€?), it ap-

pears in Eq. (55). These errors are not proportional to g and break down the linearity of (ﬂﬁ”, IA’W) in B. Our strategy survives
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if the spatial discretization is fourth order accurate; the equation systems for (ﬂ}’”), P<m>> (m=2,3,4,...) are altered in this

case.

Precisely speaking, we cannot regard the above relations (52)-(57) as PDE systems yet; they hold only at the discrete
points (x,y,t) = (i€,je,nbe?) (i=0,1,2,3,...,j=0,1,2,3,...,n=0,1,2,3,...). Since the set of discrete points becomes
dense in Q x [0 < t], they can be regarded as PDEs. We refer the reader to Ref. [10] for its technical discussion.

3. Basic design of numerical scheme
3.1. Prototype scheme

We prepare the basic design for the numerical scheme of ACE using the following 2D Stokes-type ACE:

oP ou ov

S te (&+@) =0, (58)
ou  oP u  d*u

5*&‘VGE+@%’ >
ov OP u  du

where X1,x,, U, and u, are rewritten as x,y, u, and v, respectively, and c is a positive constant corresponding to the sound
speed. We have seen in Section 2.7 that the second order accuracy in time is one of the necessary conditions for the reali-
zation of our scenario. We adopt a two step midpoint rule (semi-implicit RK-2) as the method of the time-integration. The
notation concerning the spatial discretization is summarized as follows. We introduce the grid system with the uniform
spacing €, (xV,y9) = (ie,je) i =0,1,2,...,j=0,1,2,...]. We employ the finite difference operators &, 3y,Dx, Dy, dx; Syy,
dxxy, and dyyy. The operators é, and Dy yield the approximations of first order derivative with respect to x, i.e. 9, and the oper-
ators d, and D, yield those with respect to y, i.e. d,. The operators dxx, dyy, dxy, and dy,, yield the approximations of dx, dyy, Oxxy»
and 9y, respectively. The operators J, and dx employ the three point stencil (i —1,i,i + 1) and D, employs the five point
stencil (i—2,i—1,i,i+1,i+2) for x=ie; the stencil of 6, and 4, is (j—1,j,j+1) and that of D, is
(G—2,j—1,j,j+1,j+2) for y = je. The operator dy, is defined by the product of dy and J, and dyy, is done by that of J,
and d,,. These operators employ the 3 x 3 point stencil in xy plane ([i — 1,i,i+ 1] x [j — 1,j,j + 1]). The operators dy, dy, dxyy,
and J,, are second order accurate and the operators Dy, Dy, Dy, and D, are fourth order accurate. The explicit definitions
of these operators are given in Appendix A, where the definitions of one-sided finite difference operators, such as Dx,Dy,
and so on, are also shown for later use. The notation of the discretized data for h = (u, v, P) is as follows. h?j (h=u,v,P)de-
notes h(nAt,x® y0)); 5xhg and th?j mean the approximations of dh(nAt,x,y¥) . The other finite difference approximations
of derivatives, such as dyh(nAt,x?,y?), are denoted in the same way.
Our prototype finite difference scheme consists of

W = +7 ( ~DyP} + VD + Dyy]ug.), (61)
1 i A n
UUH/Z = Z/U 2 ( DyP + V[Dxx +Dyy] yij)v (62)
At
n+1/2 2 ; n+1/2  n+1/2
Pt =pi—c jg(uij 2 ), (63)
wrt =l ¢ At< DyPi? 4+ vDyu? + D, u"*1/2]> (64)
vy = v+ AL(=D,P} Y 4 VD) 4 Dy v 1)), (65)
Pt = Py Ao (up 12, o2, (66)
where
9(u;+1/27 v;ﬂ/z) Syl n+1/2 + 6,0 J2 6 (5xxyv +1/2 | 5nyu3+1/2)_ (67)

The remarks on the above scheme are as follows.

(i) uf™2, 25"'2, and P2 are the approximation of u, », and P at (t,x,y) = ((n+ 1/2)At,x?,y?), respectively.

(ii) The operator 2, which employs a 3 x 3 point stencil, gives the approximation of the divergence of the flow velocity
oxu+0yv with the error of O(e€?). Its accuracy becomes O(e*) in the case of the diffusive mode, i.e.
Okl + 0y v ~ O(€?), since the leading error of 5,h [5,h] is (€2/6)0xh [(€2/6)0,yyh] (see Appendix A) and the following
relations hold:
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2u v

o = "oy T O (©%
>v ou
8—}/3: —W“!‘O(Ez). (69)

Owing to the operator Z, the stencil for the computation of PZ*” 2 and P}j‘-“ becomes compact.
(iii) The semi-implicit formula is employed in Eq. (63). If u}}""/" and »};""* in Eq. (63) are replaced by uf and v}, respec-

tively, the scheme becomes unconditionally unstable. The stability of the scheme will be studied in the next section.
3.2. Stability and checkerboard instability

We examine the stability of the scheme (61)-(66) in the case of ¢ = 1/(8€?) by assuming the numerical solution in the
form:

Ui u
vp, | = A"explike(l+ m)]| 2° |, (70)
P P°

where /,k, and i are the amplification factor, the wave number, and the imaginary number unit (i = v/—1), respectively.

Substituting Eq. (70) into Egs. (61)-(66), we have the characteristic equation, which is a cubic equation for"A. The roots of
the characteristic equation are expressed in the form:

}VO = CO(G, b7 V), /li] = C] (a': b': V,ﬁ1/2) + V Cz(avbvvng]/z)v (71)

where a = cos(ke),b = At/€?, and C; (i = 0,1, 2) are polynomials of the arguments; the expressions of C; are lengthy and are
omitted here. The scheme is judged to be stable in the sense of Von Neumann if || < 1 (i=-1,0,1) for -1 < a < 1. From
the condition || < 1, we have the diffusive CFL condition

bv < 13—6, (72)

and it becomes dominant for large v. From |1.4| < 1, we have the acoustic CFL condition. The formula of the acoustic CFL
condition is lengthy and we show it only for the limiting case of v = 0:

9ﬁ1/2
19v/19 - 28

The stability range extends as  increases, which corresponds to the decrease of the numerical sound speed. The acoustic CFL
condition is subject to the influence of v and the stability range shrinks as v increases. For example, the scheme is judged to
be stable up to b~1 for (v,8)=(0.1,1),b~04 for (v,f)=(04,1),b~18 for (v,p)=(0.1,4), and b~0.4 for
(v, B) = (0.4,4). In the case of v = 0.4, the stability range does not extend even if 8 increases because of the diffusive CFL con-
dition (72).

In Section 2.6, we introduced the dashpot-type damping term into the artificial continuity equation. If Eq. (58) is replaced
by

b< ~ 1.215564"2. (73)

oP ou ov
E+VP+C2<$+@):O’ (74)
the finite difference formulas (63) and (66) become
n At 1 n YAt
Pijﬂ/z _ (P; _ Czib@(uijﬂ/z7 Z/ij+1/2)>/<1 +7>, (75)
Pyt =Py = At(yPy T 4 Ca(up?, o). (76)

The change of /., by this modification is O(y€?) and 4, is not altered; the stability range is nearly independent of y while it is
0(1) and € is small.

Since the collocated arrangement of (u, v, P) on the grid is adopted in the present numerical scheme, the checkerboard
instability, which is usually observed in the pressure distribution, may occur under a certain computational condition.
We will see that this unfavorable numerical phenomenon can be cured by adding another dissipative term to Eq. (76):

PZ'H _ PZ' . At<ypg+l/2 4 CZSJZ(UEH/{ U;}H/Z) KO+ 5yy)P;+1/2>7 (77)
where x is a positive constant. The stability range is not altered greatly by the above modification while x is small. For exam-
ple, |4 <1 for (0 <k <025,b=1,0<v<0.1,1 < B). The wave number corresponding to the checkerboard pattern is
k =m/€e (a = —1) and the corresponding eigenvalues 4; are expressed as
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Jo=i1 =Ea, Ji1=Ep, (78)
where

 512(bv)* —96bv +9
- 5 i

E _ 2—bye? —16bk
T T 2 bye?

E, (79)
E, is independent of y and k and satisfies 0 < E, < 1 under the diffusive CFL condition (72) and the corresponding eigenvec-
tors are (P, Up, 7o) = (0,1,0), (0,0, 1); this mode does not contribute to the pressure variation. E, is independent of v and the
corresponding eigenvector is (Po, Uo, ¢o) = (1,0, 0); this mode is in charge of the checkerboard pattern for the pressure. In the
case of the original prototype scheme (y = k = 0), i.e. E, = 1, it is concluded that the checkerboard mode is not suppressed.
The contribution of the parameter 7 to the suppression of checkerboard instability is O(€?) and the effective contribution is
given by the parameter x. Unless k < €2, however, the second order accuracy of the time-marching is spoiled. Fortunately,
the side effect of the cure will be eliminated in the actual finite difference scheme of ACE by making use of the property of the
diffusive mode (Section 4).

4. Finite difference scheme of ACE

We will extend the prototype scheme in the previous section to the case of ACE. The treatment of the boundary condition
will be the main topic. Similar to the prototype scheme, the explanation will be given for the 2D case.
ACE (2) and (41) in 2D case are rewritten as

oP 1 /ou ov

fat+VP+@<a+@> =0, (80)
ou  ou  du OP ou du

aﬁ”w”ay+e»<—v<axz+ay2> i .
v  dv  Ov OP *v v

ar*”m*”ay+w_v<ax2+fwz)+q >

where (F, G) is the external force. For ease of explanation, we consider the problem for the case where the numerical domain
Q is the rectangle [0 <x <Ly x [0 <y <L) Then, its boundary 9Q consists of four; the line segments defined by
To=x=00<y<L)Txa=x=L,0<y<L),lo=¥=00<x<L), and I'y; = (y=1L,,0 <x<Ly). We employ the
grid system with the spacing € : (x?,y9) = (ie,je) (i=0,1,2,...,Ny;j =0,1,2,...,Ny;Ny€ = Ly; Nye = L,).

4.1. Boundary value of pressure

The finite difference formulas for the grid points in the vicinity of the boundary require the boundary values of (u, 2, P).
While the boundary data for u and v are supplied from the boundary condition, no explicit data is given for P. Since the
finite difference approximation of the pressure derivatives in the momentum equation must be fourth order accurate, the
boundary data of the pressure must be at least fifth order accurate (the boundary value for P is divided by € in the finite
difference approximation of the pressure gradient; see Appendix A). In this section, we will explain the computation of P
at the boundary I'yy (y = 0); the computation for the other boundary segments can be done in the same way and the
explanation is omitted. Since the following procedure is independent of t, we will express h(t,x,y) (h =u, v,P) as h(x,y)
below.

The boundary value P(x,0) is computed by using the one-sided finite difference formula:

Py = |48P; — 36P, + 16P; — 3P4 — 1262—5()(, 0)[/25 + 0(é%), (83)

where P; stands for P(x,je). The value of &9P/dy(x,0) in the above formula is supplied via the momentum equation for v [Eq.
(82)]. The values of u, v, dv/dx, 9 v/0x2, and v/dt can easily be computed by using the boundary condition and the problem
is reduced to the computation of dv/dy and &* v/dy? at y = 0. The derivative dv/dy(x,0) is computed by the one-sided finite
difference formula:

ov _ —25v0 +48v; — 367, 4 163 — 30y

8_y(x’0) 12¢

+0(eh), (84)

where ; stands for v(x,je). The second derivative 8*v/dy?(x,0) is given by

Pv 3500 — 1040, + 114w, — 5603 + 11v,  5€% v
G Ry =0)==" e 6 gy M0 0. (85)
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We have, for the diffusive mode,

Fv o’u 5
a—yS = - 8x8y4 + O(E )
Further, we have
’u . Hx+e)-Hx-¢
8X0y4 (X7y - O) - 265 + O(e)v

H(x) = ug — 4uy + 6uy — 4us + Uy,

where u; (j =0,1,2,3,4) are the abbreviations of u(x, je). This completes the fifth order accurate formula of P(x, 0).

4.2. Finite difference formulas for inner grid points

The finite difference formulas for the inner grid points (2 <i < Ny — 2,2 <j < N, — 2) are given by

At
u;}n/z =uj+ 5 (—u,T]’-Dxug- — ViDyujj — DxPj; + V[Dxx + DyyJuj + Fi})
o2 Z g AL ynp on D pn popn V[Dy + Dy V8 + GP
i = Yyt (U = vy Uy = Dyl o VIDe+ Dy [V + G )

1/2 1/2 1/2 1/2 1/2 1/2 1/2
e = +At<,ug+ DA A RD I D PRI Ly D, D g Y )

1/2 1/2 1/2 1/2 1/2 1/2 1/2
vt = v+ At(—uf D - oD, 0 - DR 4 VD + Dy + G,

1
1 1/2 - 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Py :Pg+At<—yPg.+/ —@,@(u;*/ U2 e | (S + 0y )P + 200,05 2 o,ul 2 — s 20, 05 )D

where Fj; = F(sAt,x",y0)) and G = G(sAt,x",y9) (s =n,n+1/2) and y is a positive constant of the order of unity.
The remarks on the above formulas are as follows.

(i) The nonlinear terms and the external force are added in Egs. (89), (90), (92), and (93).
(ii) The term

,UG[(5xx + 5yy)PZ»H/2 ) (5X U;+1/25yu5+1/2 _ 5Xug+1/25y D;H/Z)]

1709

(86)

in Eq. (94), which will hereafter be denoted by I, corresponds to x(dx + 5yy)P;’j‘ 172 in Eq. (77), which is introduced as

the cure for the checkerboard instability. Obviously,

gy T2 dy ox  0x dy

lp = pe ox2 ' 9y?

2 vj
P P <8u81/ auayﬂ o),

(95)

and it appears on the right hand side of Eq. (47) for k = pe2. Since Egs. (52) and (53) are derived as before, the contri-

bution of I, becomes O(e?). Thus, Egs. (54) and (56) are not altered by the cure for the checkerboard instability.
4.3. Computation at grid points next to boundary
We will explain the computation at the grid points next to the boundary, i.e. (i,1) and (i, N, — 1) for 1 <i < Ny -1

(1,j) and (N, — 1,j) for 2 < j < N, — 2. In the following explanation, we will use various finite difference operators, the
initions of which are given in Appendix A.

and
def-

As for the pressure update, Egs. (91) and (94), no modification is necessary since its stencil is compact. However, the

velocity update, i.e. Egs. (89), (90), (92), and (93), employs the five point central finite difference operators D, and D,

and

at least one of them is not available at the grid points next to the boundary. We can employ the one-sided five point finite
difference operators D, or D, instead of D, and Dy or Dy instead of D,. Then, the fourth order accuracy is assured for the con-
vective terms and the pressure gradient. As for the second derivatives in the viscous terms, e.g. du and 9y, v, the central five
point finite difference operators D,, and D,, are not available and the one-sided 5 point finite difference operators



1710 T. Ohwada, P. Asinari/Journal of Computational Physics 229 (2010) 1698-1723

Dy, Dyy, Dy, and Dy, are third order accurate. A larger stencil is required for the realization of the fourth order accuracy but it
is not advantageous for the stability. Here, we propose an alternative method based on the well-known technique called
Numerov algorithm. For the concise expressions of formulas, we express doxu, d, v, dyyP, dudyyt as Uy, Vy, Py, and Ukyy,
respectively; Uy, V., Uy, and so on, are defined in the same way. The five point finite difference approximations
Dyu, D, v, Dy, and so on, will be expressed as they are.

In Numerov algorithm, the momentum equations (81) and (82) are modified. In the case of the grids points
(i,1) (2 <i< N-—2), which are next to I'jo, the modification is as follows. We multiply both hand sides of Eq. (81) by
1+ (€2/12)6,,. Noting

2 2 2
1450y =1 *1%%2* o(e*), (96)

and Eq. (121) in Appendix A, we have

ou . € ,
5p = ~UDstt — oDy — DP — 2 (Uyy Uy +2Uy Usy + gy + ViyUy +2VyUyy + 2Dyt + Py)
€2 ~
+ v(Dxxu +Uy+35 Uxxyy> + F +0(e"), (97)
where
_ €
i <1 + ﬁayy)u, (98)
- €2
Fo (1 + ﬁ(syy)a (99)
Similarly, we have from Eq. (82)
ov , , 2 , ,
i —uDyv — vDyv — D)P — V) Uy Vi +2Uy Vi + uVyyy + 3V, V) 4 0Dy, v 4 Dy P)
€ ~
+v<Dxxv+Vyy +ﬁvxxyy) + G +0(e"), (100)
where
. €
V= (l+ﬁ5yy>v7 (101)
. e
G= (1 +ﬁayy>c. (102)

The modified momentum equation for the grid points (i, N — 1) (2 < i< N —2), which are next to Iy, is obtained from the
above formula by the replacement (Dy,D,,,) — (Dy,Dyy). The modified momentum equations for the grid points
(1,j) (2 <j< N-2) are given by

u . 7 2 a a
% — —uDu — vDyu — D,P — 152 (3UsUy + Dyt + ViU + 2VUpy + 90Uy + DicP)
€ -
+ v(UXX + Dyt + 'Vl Uxxyy> +F+0(eh), (103)
ov . €? ,
5p = ~ubxv = 0Dyv = DyP — o (UneVx 42UV + U+ ViV + 2ViVsg + 0V + Pay)
€? —
+v<VXX+Dyyv+ﬁVxxyy> +G+0(€"), (104)
where
_ €? - €?
0= (1+ﬁé,¢x>u, F= <1+ﬁ5,¢x>F, (105)
_ €? — €
V= (1+ﬁ5,(x)v, G= <1+ﬁ(sxx)c. (106)

Those fgr the grid ppints (N —1,j) (2 <j<N-2),which are next to I'y, are obtained from the above formula by the replace-
ment (vaDXXX) - (DXsDxxx)-

At the grid points (1,1),(Nx—1,1),(Nx —1,N, — 1), and (1,N, — 1), the finite difference operators D, and Dy, are not
available. In this case, Numerov algorithm requires the multiplication of 1 + (€2/12)(5x + J,y) by both hand sides of Egs.
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(81) and (82). Then, we encounter another difficulty in the computation of (6. + dy)9.P (o« = x,y). Fortunately, we can com-
pute (aﬁ + 832,)8“P as the finite difference approximation of u and » by making use of Eq. (95). We define @ and 2:

o= (1 ]; (O + oyy)> (107)

(1 + 12(a +5yy)> (108)

The modified momentum equations for the grid point (1,1) are

ol ; . ,
T —uDyu — vDyu — D,P
1 [3U U + UDytt + VigUy + 2V Uy + 0Usy + UxUyy + 2Uy Uy + Uy + Vi Uy + 2V, U,y + 0Dy 1
€ ~
+F2(UnVy + UV — Uy Vi — UyVi)] + v(Uxx +Vyy +EUXXW> +F, (109)
ov , . ,
5 —uDyv — vDyv — D,P
12  [VyUpy + 20,V + Dt + ViVy + 2ViViy + WV + ViUyy + 2U, Vs, + UV, + 3V, V,y + 0D,y 0
€ ~
+2(UyVy + UxVyy — Uy Vi = UyVi)| + V(Vxx +Vy +€VXny) +G, (110)
where
(1 +12(axx+5yy)>F, G= (1 12(axx+ayy)>c (111)

Those for the other three grid points are obtained by the appropriate replacement of one-sided finite difference operators,
e.g. (Dy, D) — (Dx,Dyx) at the grid point (N —1,N —1).

Let (u,1,u1) and (2, 7, ?) at (x,y,t) = (i€, je, nAt) be denoted by gug, ug, u;}) and ( 2}, 7, v[}) respectively. As an example of
the computation of Numerov algorithm, we explain the computation procedure for (i,j) = (i,1) (2 < i < Ny) below. The
computation procedure is as follows:

(i) Compute uf', from ufy, uf,,uf', by using Eq. (98). Compute 27 ; by using Eq. (101) in the similar way.
(ii) Compute u"“/2 and 77" by using the first order accurate time integration method (Euler method) for Eqgs. (97) and
(100), respectlvely

(iii) Compute ;" from i1, uf5 "/

12

n41/2

, and u; ' according to Eq. (98), i.e.

u u;

i1 - 5 i1 2

n+1/2

n+1/2 7§~n+1/2 _E( n41/2 +un+1/2)7

n+l/2

where u; is computed by using Eq. (89) and u;

n+1/2 n+1/2

is given by the boundary condition. Carry out the inverse trans-
formatlon v, — ] in the similar way.
. ! ! .
(iv) Compute ujf+ and vf_f by using the midpoint rule for Egs. (97) and (100), respectively.
(v) Carry out the inverse transformation (ﬂﬁl, i)g]“) — (uﬁl, 1/,?1”> in the same way as step iii).

The computation for (i,N, — 1) for (2 < i< Ny —2) and (1,j) and (Nx — 1,j) (2 <j <N, —2) can be done in the same way.
Finally, as an example of the computation for four grid points (1,1), (1,Ny — 1), (Ny — 1 N 1), and (1,N, — 1), we show the

formula of the inverse transformation for obtaining u};'"/*:

3. 1
uﬁl/z _ 7u111+]1/2 . ( utt2 + u%uz + ugﬁl/z + ug+1/2)7
2" 8
where u{;'”* and ug’'/? are given by the boundary condition and u5}"? and u;'/? are computed in advance by the inverse

n+1/2 n+1/2

transformation of w;, and u]
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5. Numerical tests
5.1. Generalized Taylor-Green vortex problem

The problem of Taylor-Green vortices is widely employed as a test case for various INSE solvers because of the availability
of its si